

CYBER SECURITY DIVISION

Company General Use

MALWARE TECHNICAL INSIGHT

TURLA “Penquin_x64”

Last update: May 29th 2020

The information contained in this document is proprietary to Leonardo S.p.a. This document and the information contained herein may
not be copied, reproduced, used or disclosed in whole or in part in any form without the prior written consent of Leonardo S.p.a.

© Copyright Leonardo S.p.a. – All rights reserved

 Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

INDEX

EXECUTIVE SUMMARY……………………………………………..………………………………….....1

1. SCENARIO……..……..………………………………………………………………………………....2

2. EVOLUTION OF THE “PENQUIN”…………....…………………………………………………......4

3. BUILD DATE ESTIMATION…………………………………………………………………………...7

4. MALWARE CAPABILITIES………………………………………………………………………….10

5. CONCLUSION………………………………………………………………………………………....22

6. MITRE ATT&CK TTPs………………………………………………………………………………..23

7. INDICATORS OF COMPROMISE…………………………………………….……………....…….25

REFERENCES………………………………………………………………………………………..........28

APPENDIX A: BUILD DATE ESTIMATION…………………………………………………………….29

1

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

EXECUTIVE SUMMARY

The APT group known as Turla (aka Snake, Venomous Bear, Group 88, Uroburos, Waterbug

and others) is a well-established collective that has been operational since at least 2004. Turla

is one of the most advanced APTs in the world; it is famous for developing new and very

advanced techniques to avoid detection and to ensure the persistence on the targeted

network. This adversary is known for targeting, among the others, government, defense and

education sectors all around the globe.

In December 2014, Kaspersky reported on a tool attributed to the Turla intrusion set used to

target the Linux Operating System: they named it “Penquin” Turla. In 2017, more information

about this threat was discovered
1
. Since then, almost three years have passed with no new

information being discovered about this specific threat, until now.

In this technical report we analyse new samples of the toolkit spotted in April 2020, and

dubbed “Penquin_x64”. We describe in depth the capabilities of this stealth backdoor,

comparing it to the older known versions, and we also investigate the possible build dates of

these samples. The threat actor put in place a considerable amount of effort to avoid the

improper activation of the backdoor. In this report we shed light on the communication

protocol, providing a tool to efficiently detect a “Penquin_x64” infection in enterprise networks.

The discovery of this Turla module still raises the same question of the 2014 Kaspersky’s

report about how many other unknown Turla variants exist.

Figure 1 – Evaluation of “Penquin_x64” tactics and techniques

1 PENQUIN’S MOONLIT MAZE: The Dawn of Nation-State Digital Espionage; by Juan Andres Guerrero-

Saade (GReAT), Costin Raiu (GReAT), Daniel Moore (King’s College London), Thomas Rid (King’s College
London). April 2017.

T1105 T1059 T1205 T1024 T1032 T1158 T1222 T1094

8% 8% 25% 17% 42%

EXECUTION LATERAL
MOVEMENT PERSISTENCE COMMAND AND

CONTROL
DEFENCE
EVASION

T
A

C
T

IC
S

MITRE ATT&CK TTPs

2

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

1. SCENARIO

In April 2020, a few other samples similar to those detected in 2014 have been uploaded to a

multi-scanner service. They let us discover the existence of an additional version of Turla

“Penquin” that has not been analysed yet: we named it “Penquin_x64”.

Figure 2 – Timeline of “Penquin” events

“Penquin_x64” is a stealth backdoor that, in addition, tries to hide itself from the eyes of the

system administrators mimicking the “cron” binary, that is a system utility used to create pre-

scheduled and periodic background jobs on Linux servers and clients.

The analysis we performed allowed us to fully understand all the malware

capabilities and the network protocol used to activate the backdoor. Consequently,

we built a python code that can be used by system administrators to check the

presence of “Penquin_x64” on their networks.

“Penquin_x64” is a brand new piece of the Turla puzzle that remained uncovered for years. It

is not possible to identify the exact date of build for this version. However, the analysis

performed allowed us to estimate with high confidence that the most recent sample we

discovered has been built between 2016 and 2017. We cannot state that this component is still

in use by Turla, but there is the possibility that additional versions that target the Linux OS

have not been discovered yet. Even though we do not have concrete data to support this

statement, we can confirm that the most recent samples we found are still able to run on the

current stable version of Ubuntu.

Considering that Turla is one of the most complex APTs in the world, and since it is highly

likely that this malware has been used more often than what we currently know, we

recommend to verify its presence on Linux OS servers and clients by using the tool we have

built and the indicators of compromise attached to the end of this report. Based on our

analysis, we have a high degree of confidence that this malware has been used as a post

compromise tool on Virtual Private Servers that successively played a role in the Turla network

infrastructure (Figure 3).

2004

Rise of TURLA APT

2014

First Penquin
discovery

2017

A few more information
about Penquin backdoor

2020

New samples of “Penquin_x64”
discovered and analysed by

Leonardo’s cybersecurity analysts

3

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

RECONNAISSANCE DELIVERY

EXPLOITATION COMMAND
AND CONTROL

INSTALLATION
.

ACTIONS ON
OBJECTIVES

WEAPONIZATION

Figure 3 – Hypothesis about the role of the Penquin family within the Turla’s infrastructure

The behavior of this implant suggests that it starts to operate at the “Installation” phase of the

Cyber Kill Chain®, and, successively, once the stealth backdoor is activated by the attacker, it

operates at the “Command and Control” phase also (Figure 4). At the same time, we do not

exclude that the “Actions on Objectives” phase could be up and running on the compromised

infrastructure or on other infrastructures that are reachable from the infected one. However,

since we did not have the chance to investigate an actual incident involving this implant, it is

not possible to be confident about this last statement.

Figure 4 – Penquin killchain phases

COMMAND AND
CONTROL

COMPROMISED
INFRASTRUCTURE BY

PENQUIN_X64 STEALTH
BACKDOOR

VICTIMS INFECTED
BY ANOTHER TYPE
OF TURLA’S

IMPLANT

…
.

4

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

2. EVOLUTION OF THE “PENQUIN”

The birth of the “Penquin” toolkit goes back years, at the dawn of Nation-State digital

espionage. Two important reports of extremely high quality about this threat have been

published by Kaspersky GReAT, in 2014 and in 2017 respectively: “The Penquin Turla” [1] and

“Penquins Moonlit Maze” [2]. While the former is a technical analysis of a set of samples found

in the wild, the latter gives a very broad but specific context about Turla intrusion set, and how

it evolved since the early 2000s. A third important report that mentioned features of the

“Penquin” family has been published by the Swiss CERT in 2016 detailing a prolonged

campaign against the defence contractor Ruag [3].

In April 2020, we detected three new “Penquin” samples. With respect to those already known,

these new samples target 64 bits architectures. We analysed them, and we compared them

with the old ones. In the rest of this document we will report the result of this deep technical

analysis that allowed us to understand much more about this specific threat. In the following

section we will describe the three different versions of “Penquin” we have been able to identify.

We will provide an estimation of the build date of the new samples in Section 2, while in

Section 3 we will report on the capabilities of this malware, also providing a discussion about

differences and commonalities of the different versions.

2.1 “Penquin” versions

Having at our disposal new and old samples, we have been able to categorise them in three

different sets that have many commonalities, but also a few important differences.

The first set, that we will call “Penquin”, is the one firstly analysed by Kaspersky in

2014. One of its peculiar features is the sniffing technique initially attributed to the cd00r

project (http://www.phenoelit.org/stuff/cd00r.c) [1], and successively to LOKI2 [2]. This

feature allows the samples belonging to this set to become stealth backdoors that are

difficult to detect, and that can be potentially used as post-compromise tools. Indeed,

the sample will connect back to a C2 only after a sniffed packet matches a series of

predefined mathematical conditions. Note that the IP address of the C2 is encoded in

the activation packet, and therefore it is not possible to foresee it in advance.

We named the second set of samples “Penquin_2.0”. One sample belonging to this set

has been detected by Kaspersky after the first publication of their 2014 report, which

has been updated to include it. The other three samples we know about have been first

seen in the wild in 2014, 2016 and 2017 respectively. All of them have been included

among the indicators of compromise reported in [2]. “Penquin_2.0” shares most of the

capabilities with his ancestor, but there is a fundamental difference: it doesn’t use the

network sniffing technique anymore. On the contrary, it includes a hardcoded

1

2

http://www.phenoelit.org/stuff/cd00r.c

5

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

Command and Control server, specified by IP address and port, that is immediately

contacted. This IP address belonged to LunaSat ISP. In 2015, it already came out that

several other IP addresses belonging to the same Lebanese satellite Internet Service

Provider have been leveraged by Turla.

The third set of samples is the most interesting one, as a matter of fact it has not been

publicly disclosed yet: we named it “Penquin_x64”. Two samples belonging to this set

have been submitted to VirusTotal service in April 2020 from the Czech Republic and

Italy respectively. We have reason to believe that the sample submitted from Italy is

related to an incident investigation that could reveal more details about Turla TTPs. We

are not aware of the identity of who submitted it, even though we are based in the same

Country. The two samples submitted in 2020 let us discover a third one that has been

submitted to the Virus Total service in December 2017.

All “Penquin_x64” samples are compiled to work on 64 bits architectures and they embed a

legitimate linux binary trying to mimic: “cron”. Furthermore, they implement the same sort of

port knocking technique
2
 of the first “Penquin” version, using a different filter to activate the

backdoor. In Table 1, we provide a comparison of the main features of the three sets of

samples we analysed, for the STIX 2.1 standard. More details about commonalities and

differences of the three malware versions will be reported in Section 3.

Features Malware Versions Description

Name Penquin Penquin_2.0 Penquin_x64

Estimated Date
of build

- - After mid-2016 The date of build that we estimate

First Seen ITW November
2014

December
2014

December
2017

Date that the malware instance or family was
first seen.

Architecture
execution envs

x86 x86 x86-64 The processor architectures that the malware
instance or family is executable on.

Implementation
languages

c c c The programming language(s) used to
implement the malware instance or family.

Capabilities controls-local-
machine

controls-local-
machine,
communicates-
with-c2

controls-local-
machine

Specifies any capabilities identified for the
malware instance or family.

2 Since it does not open a local port but it connects back to a C2 specified in the incoming packet, formally it

should not be considered an actual port knocking. However, the way it is used recalls it.

3

6

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

Features Malware Versions Description

Name Penquin Penquin_2.0 Penquin_x64

Kill-chain
Phases

Installation, C2 Installation, C2 Installation, C2 The list of kill chain phases for which this
Malware instance can be used.

Malware Types backdoor,
remote-
access-trojan

backdoor,
remote-access-
trojan

backdoor,
remote-access-
trojan

The type of malware being described.

OS execution
envs

linux linux linux The operating systems that the malware
family or malware instance is executable on.

Malware
Instances
(SHA256)

1d5e4466a6c5
723cd30caf8b
1c3d33d1a3d4
c94c25e2ebe1
86c02b8b41da
f905,
3e138e4e34c6
eed3506efc7c
805fce19af13b
d62aeb35544f
81f111e83b5d
0d4

8856a68d95e4
e79301779770
a83e3fad8f122
b849a9e9e31cf
e06bf3418fa66
7,
2dabb2c5c04d
a560a6b56dba
a565d1eab818
9d1fa4a85557a
22157877065e
a08,
5a204263cac1
12318cd162f1c
372437abf7f20
92902b05e943
e8784869629d
d8,
d49690ccb82ff
9d42d3ee9d7d
a693fd7d30273
4562de088e92
98413d56b86e
d0

8ccc081d4940
c5d8aa6b782c
16ed82528c08
85bbb08210a8
d0a8c519c542
15bc
67d9556c695ef
6c51abf6fbab1
7acb3466e314
9cf4d20cb64d6
d34dc969b650
2
d9f2467ff11efa
e921ec83e074
e4f8d2eac7881
d76bff60a872a
801bd45ce3d5

Specific malware samples belonging to the
corresponding families

C2 Domains news-
bbc.podzone[.]
org

 C2 hardcoded domains

C2 IP and Ports 82.146.175[.]43

:1773

 C2 hardcoded IP addresses and ports

Table 1 - Features of the three different “Penquin” versions discovered

7

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

3. BUILD DATE ESTIMATION

Since the first confirmed reporting of Turla “Penquin” dates back to the end of 2014, we

considered extremely important for the current analysis to estimate the build date of the new

samples we found to be extremely important to our analysis. Indeed, when we started this

analysis, one of the first hypotheses we considered was that the new samples we detected

could have been built before the publication of the first Kaspersky’s report in 2014.

In comparison to the Windows Portable Executable which has a compile timestamp field, the

ELF file format does not provide any corresponding field that can be used for such a purpose.

Therefore, we considered several different approaches, which are fully described in Appendix

A, such as analyzing the EI_ABIVERSION, or the epoch of the statically linked libraries. As for

the “Penquin_x64” set, the approach that in our opinion turned out to be the most reliable is

based on the analysis of the embedded cron binaries, which is detailed in the following

subsection.

3.1 Estimated date of the embedded binaries

Analyzing the “Penquin_x64” malware set, we found that these samples embed and execute

the cron binary, used in linux OS to create pre-scheduled and periodic background jobs.

Indeed, samples belonging to this set try to mimic cron in order to hide themselves from the

eyes of the user or system administrator, and they need the actual version of the binary to run

it after their execution. To support this hypothesis, we immediately verified that the cron binary

each malware embeds was not trojanized, and that it was launched by the malware as a child

process. After extracting the embedded cron from the samples, we also noticed that each

sample embeds a different version of the binary.

Therefore, we analysed the ABI field of the cron binaries we recovered, and we found the

indicative time windows they have been built. It was discovered that they included three

different versions of cron, that have been built in three different time windows, but still the

information that we have got was too inexact. Table 2 reports the outcome of this first analysis.

Cron hashes ABI GCC Year

3309e8f29e53d56d177ab2ad4b814cd3d8215944a0bbe233e498766
1d1db5afd

2.6.32 >= 4.9.1
< 7.2.0

>=2014
<2017

dc17065fac8ce24aa6c344a45f12a0d0e3e4928d23b8aa6edad769b2
4f4c7a39

2.6.18 > 4.4.4
< 4.8.2

>2010
<2013

3609f24f314d2b95f9d607be8205ed8722b1457897d1eb222d950e38f
84aa728

2.6.24 >= 4.8.2
< 4.9.1

>=2013
<2014

Table 2 - Cron build date estimation based on the ABI field of the ELF

8

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

In addition to the analysis of the ABI field of the cron instances, we also tried a different

approach that is based on the following simple hypothesis: if these binaries have not been re-

compiled by the attacker, then it is probable they have been taken from a Linux distribution.

Therefore, we downloaded the cron binary packages of several distributions, and we found

with a simple sha256 comparison that those we were interested in have been released in

Ubuntu and CentOS.

Furthermore, one of the three cron binaries has been released with Ubuntu 16.04 and 17.04,

in April 2016 and April 2017 respectively. Therefore, it is with high confidence that we can

state that “Penquin_x64” was still being developed during those years, and that the last

version we currently know about was compiled after April 2016. Table 3 summarises the

results of the build date estimation based on this analysis.

Cron SHA256 Penquin_x64 SHA256
embedding the cron

Possible Linux
Distributions

First known
release date

3309e8f29e53d56d177ab2ad4b814c
d3d8215944a0bbe233e4987661d1d
b5afd

d9f2467ff11efae921ec83e074e4f8

d2eac7881d76bff60a872a801bd4

5ce3d5

>= Ubuntu 1604
<= Ubuntu 1704

April 2016 - April
2017

dc17065fac8ce24aa6c344a45f12a0d
0e3e4928d23b8aa6edad769b24f4c7
a39

67d9556c695ef6c51abf6fbab17ac

b3466e3149cf4d20cb64d6d34dc9

69b6502

Centos 6.7
Centos 6.8

Sep 2015- July
2016

3609f24f314d2b95f9d607be8205ed8
722b1457897d1eb222d950e38f84aa
728

8ccc081d4940c5d8aa6b782c16ed

82528c0885bbb08210a8d0a8c51

9c54215bc

Ubuntu 13.10
Ubuntu 14.04

October 2013 -
April 2014

Table 3 - Release date of the Linux distributions that include the cron binaries found in

“Penquin_x64”

It can be observed that the results reported in Table 3 do not intersect perfectly those reported

in Table 2, but from our analysis we believe this is the most reliable finding to give a lower

bound to the build date of each sample belonging to the “Penquin_x64” set (Figure 5).

9

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

Figure 5 - Build date lower bound estimation for “Penquin_x64” samples, based on the first

known date of release of the embedded cron.

10

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

4. MALWARE CAPABILITIES

In order to understand all the differences among the three Turla “Penquin” versions we have

identified, we conducted deep analysis of all the available samples, including those already

reported in 2014 and 2017. A very important piece of code, that was not previously described

in any analysis we know about, is used by the three malware sets:

result = trybuiltin(a2, v9, v10);

if (!result):

 result = runcmd((int)v4, v9, (int)v10, a4);

The runcmd function is the one described by Kaspersky: “[the malware] reports its own PID and

IP to the remote address, and starts an endless loop for receiving remote commands. When a

command arrives, it is executed with a ‘/bin/sh -c’ script” [1]. However, the code snippet above

highlights that before calling the runcmd function (that uses the /bin/sh technique previously

described), it checks the result of another function, called trybuiltin in one of the rare samples

that didn’t have the symbols stripped.

The trybuiltin function checks the received parameters against a hardcoded data structure,

named cmdtab, and calls the corresponding command implemented in the malware, without

resorting to the command line. These commands are specified through command codes that

are mapped to a list of functions (the full list with a detailed description is reported in the

Section 3.3), that include: a do_upload function to send back to the C2 a file, a do_download

function to download a remote file from the C2, and a do_exec function to download and

execute a file. These commands add to the known stealth backdoor capabilities of this

malware also the capabilities of a remote access trojan.

Additional implemented commands are: do_vsupload, do_vsdownlod, do_vslist, do_vsdelete,

do_vsshutdown and do_vstat. All the commands preceded by the string do_vs have something

very important in common: they can be executed on a remote IP address and port that is

received as input parameter, that is potentially, and highly probably, different from the C2.

These commands will therefore establish a new encrypted connection with a third peer that is

specified by the attacker. The very detailed Ruag report published in 2016 already mentioned

this capability of “Penquin”, but it didn’t give too many details. In particular, the report by the

GovCERT.ch says:

It [the malware] even contains a feature to access a linear filesystem at a third IP
address (like a file repository), but we never found the corresponding server

implementation [3].

11

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

As for the do_vsdelete and the do_vsshutdown functions, they are used to send two commands

to the remote peer. The binary code available in the malware does not allow to confirm what

should be the result on the remote peer, but their names suggest that they will respectively

delete and shutdown something. It is highly possible that the do_vsdelete deletes a file on the

remote peer, and that the do_vsshutdown executes the shutdown of the machine or kills the

malware process. The do_vslist function lists the files of the peer and sends back to the C2 a

list with the following information: Description, File Name, Size and Status. We presume at this

time, that the presence of fields such as Status and Description may be related to some peer

to peer file system functionalities.

4.1 “Penquins” differences and commonalities

The three malware sets have the same code base. As a matter of fact, they share a lot of

binary code. For example, one of the features that remained unchanged among all the three

malware sets is related to the encryption algorithm used to obfuscate the strings included in

the binary. This kind of technique is also peculiar of other tools used by Turla:

index = 0;

do{

 _decrypted__buffer[index] = _xored__buffer[index] ^ (index + 0x5);

 ++index;

}

while (index <= _xored__buffer_size);

Another commonality of the three sets is related to the encryption algorithm used to

communicate through the network. Indeed, all the communications are encrypted with the

BlowFish algorithm, and a symmetric key exchanged with Diffie Hellman. Furthermore, the

values that are used for the initialisation vector are always the same.

int __cdecl bf_crypt(int len, int a2, int key, int a4)

{

 int iv; // eax

 int num = 0; // [esp+20h] [ebp-8h]

 if (a4)

 iv = key + 0x386C;

 else

 iv = key + 0x3864;

 BF_ofb64_encrypt((_BYTE *)a2, (_BYTE *)a2, len, key + 10268, iv, &num);

 return len;

}

12

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

Commonalities are more noticeable when considering the set of commands they can receive

from the network, and the corresponding binary code to handle and execute them. “Penquin”

and “Penquin_2.0” share exactly the same set of commands, together with the main function

that handles all of them. These commands are organised in a data structure that the malware

authors called cmdtab, previously mentioned, which will be fully described in Section 3.2.

These two malware versions, after the initialisation phase, basically share the same code to

process the received commands:

 while (!feof(v10))

 {

 memset(&v20, 0, 10240);

 receiveData(srvfd, &v20, 10240, (int)&CStruct);

 command(&v20, (int)&cmdtab, 1, srvfd);

 fflush((int)v10);

 sendEndOfData(srvfd, (int)&CStruct);

 }

Only a small part of code is slightly different, that is mainly related to the way “Penquin_2.0”

recovers the hardcoded IP address and port of the C2 it has to connect to. As a matter of fact,

“Penquin_2.0” is the only one that has the C2 IP address and port hardcoded in itself at the

end of the file.

As for the stealth backdoor capabilities, “Penquin_x64” and “Penquin” use the same technique

to interact with the attacker: they leverage the libpcap library to sniff the network traffic,

applying a filter to match a ‘magicô packet. The filters they use are slightly different (they are

reported in detail in Section 3.3). On the contrary, “Penquin_2.0” malware set does not use the

libpcap library to sniff the network traffic and it does not require root privileges to run. The IP

address of the C2 is hardcoded at the very end of each sample. However, the only IP address

and port we have been able to recover is equal to 82.146.175[.]43:1773. This IP address

belonged to LunaSat ISP, a Lebanese satellite Internet Service Provider that has been used

by Turla also in other cases [4]. We think that other samples belonging to this set have been

padded or resubmitted with the last portion of the binary modified, producing therefore

additional IP addresses that may not be really used by the attacker. For this reason, we do not

report them as indicators of compromise.

“Penquin_x64” is the only one that embeds the cron binary. With respect to the other samples,

several strings have been encrypted or removed, probably to avoid detection. Furthermore,

some portions of code have been removed. “Penquin_x64” uses the do_start method as the

main function. This function was present in the other versions already, available in cmdtab

structure, but it has been slightly modified. Indeed, in “Penquin” and “Penquin_2.0”, it was

used to download an executable from the network, to save it to /tmp/.xdfg, and to execute and

13

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

delete it after the execution. “Penquin_x64” uses a different way to parse the incoming

commands, and the do_start function seems to be related to this new feature. In particular, the

cmdtab data structure containing the codes of the commands to execute and the corresponding

functions to call is not present anymore, even though the implementation of the functions is

still there. Therefore, the do_start function downloads a file (not an executable anymore) from

the network, and it saves it to /root/.session.

The sample expects that the .session file must be encoded with the linux utility named uuencode,

generally used to transmit binary files over transmission mediums that do not support other

than simple ASCII data. The resulting encoding will include both the binary file and its

metadata, such as the original filename and the permissions. “Penquin_x64” embeds the

implementation of the counterpart of uuencode, that is the uudecode utility, that is then used to

decode the file, leveraging the included metadata. Since the binary code of “Penquin_x64”

expects to execute a file named /root/.hsperfdata just after the decoding, we guess that this is the

original name of the file that is received from the network, encoded in /root/.session. The file

/root/.hsperfdata is then executed through the command ‘/bin/sh -c’, capturing the standard

output that is then redirected to a file.

4.2 Commands description

Table 4 reports the full list of commands that are built-in in to the malware code of the three

malware versions. This information is directly derived from the cmdtab data structure that is

present in “Penquin” and “Penquin_2.0”. Indeed, this data structure contains the command

code, the corresponding function to execute when such a command code is received, the

minimum and the maximum number of input parameters allowed. As for “Penquin_x64”, the

cmdtab data structure has been removed, but all the implemented functions are still present.

Function name Command
code

Description Num of
input
params

do_exit quit It makes the malware exit returning 0. It doesn’t return
any feedback to the C2.

0

do_setenv setenv It adds a new environment variable or modifies it if it
does not exist. It does not return any feedback to the
C2.

2

do_cd 0x80D13E9 It re-implements the ‘cd’ command logic.
HOME value is set to /tmp during the malware init
code.

0 or 1

14

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

Function name Command
code

Description Num of
input
params

do_download ___123!@# It opens a local file in write mode. Its path is passed by
the C2 as an input parameter. If there are no errors, it
sends back to the C2 the message
"__we_are_happy__", and receives the
content of the file to write on the disk.

1 or 2

do_upload ___456$$$ It opens a local file in read mode. If there are no errors,
it sends back to the C2 the message
“__we_are_happy__”, followed by the file content.

1 or 2

do_start ___789&*(It downloads an executable in /tmp/.xdfg. It changes its
permissions by adding the executable flag, and then it
starts it by using a fork and the arguments passed as
input parameters. Finally, the executable is deleted
from the file system. [This function has been modified
in “Penquin_x64”]

1 to 24

do_exec ___243)!# It downloads an executable in /tmp/.xdfg (“Penquin”
and “Penquin_2.0”) or in /tmp/.sync.pid (Penquin_x64).
It changes its permissions by adding the executable
flag, and then it runs it by using a fork the arguments
passed as input parameters. Finally, the executable is
deleted from the file system.

0 to 24

do_vslist ___4396#? It establishes a new encrypted connection to an IP and
port passed as argument from the network, and it
sends to this peer the message “0x10”. Note that IP
and port of the peer can be different from the C2 that
sent the input command. Successively, it sends back to
the C2 files information received from the remote peer
that are organized with the following fields: Description,
FileName, Size, and Status. Finally, it sends back to
the C2 the message “Done!\n”. The status can have
one of the following values: “Ok”, “Size
mismatch”,"Unknown err","Remote VS is empty !\n".

2

do_vsupload ___43()*# It establishes a new encrypted connection to an IP and
port passed as argument from the network, and it
sends to this peer the message “0x11”. Successively,
it reads a local file that is then sent to the peer through
the established SSL channel, encrypted with the
BlowFish algorithm. It checks different error cases and
when the command execution ends, it sends back to
the C2 the message “Done!\n”.

3 to 4

15

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

Function name Command
code

Description Num of
input
params

do_vsdownlod ___526((@ It establishes a new encrypted connection to an IP and
port passed as argument from the network, and it
sends to this peer the message “0x12”. Successively, it
downloads a remote file in chunks (1024 bytes each) to
a local file, which path is passed as argument. If the
number of downloaded bytes is zero, the local file is
removed. Finally, it sends back to the C2 the message
“Done!\n” once the operation is completed.

3 to 4

do_vsdelete ___*32)(2 It establishes a new encrypted connection to an IP and
port passed as argument from the network, and it
sends to this peer the message “0x13”, followed by
another argument. At the end, it sends back to the C2
the message “Done!\n”.
We speculate that one of the arguments is the remote
path of the file to delete.

3

do_vsshutdown ___(@#*$5 It establishes a new encrypted connection to a remote
peer (IP and port passed as arguments), and it sends
to it the message “0x14”. Successively, it sends the
message “Done!\n” to the C2.

2

do_vsstat ___@ͨ It establishes a new encrypted connection to a remote
peer (IP and port passed as arguments), and it sends
to it the message “0x15”. It receives data from the peer
and successively, it sends back to the C2 the peer file
system type and information about its available disk
space.

2

Table 4 - List of commands that can be executed

4.3 Magic packets for remote command execution

Once “Penquin_x64” completes the startup sequence, it is not ready to receive commands

from the attacker yet. It does not start a reverse shell, nor does it try to listen for incoming

connections on any local port of the infected host. It passively starts sniffing the incoming data

on eth0 interface, searching for the right packet that matches all the required conditions. The

threat actor that is behind this tool, has taken considerable effort (and a lot of math) in such a

small piece of code in order to make sure that only properly crafted packets can trigger an

action on the running sample. This is also due to the fact that, encoded in the activation

packet, lies the IP address that the sample will try to contact to if all the conditions are

matched. In this section we will describe such conditions and explain how to build the magic

packet to make the Penquin happy (cit.).

16

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

The first condition, that we call pcap_condition, is the simplest one (it has also been described

in previous analysis [1]): it consists of a pcap filter which is implemented through the libpcap

library that is statically linked in the binary. However, the filter applied by the stealth backdoor

capability of “Penquin” and “Penquin_x64” is slightly different as reported below:

“Penquin” magic packet filter

(tcp[8:4] & 0xe007ffff = 0xe003bebe) or (udp[12:4] & 0xe007ffff = 0xe003bebe)

(tcp[8:4] & 0xe007ffff = 0x1bebe) or (udp[12:4] & 0xe007ffff = 0x1bebe)

ȰPenquin_x64” magic packet filter

(tcp[8:4] & 0xe007ffff = 0x6005bdbd) or (udp[12:4] & 0xe007ffff = 0x6005bdbd)

It can be noticed that in both cases the malware checks for a specific four bytes value of the

incoming packet. TCP or, alternatively, UDP packets are considered by the filters. However,

since both constraints and actions taken by the sample are the same in either case, for the

sake of simplicity, in the rest of this analysis we will focus on UDP packets only.

Even though the bitmask remained the same for all versions (0xe007ffff), the result value has

changed between different releases (0xe003bebe or 0x1bebe became 0x6005bdbd). As will be detailed

below, some bits of that DWORD are used to generate the final IP address that the sample will

try to connect to. In particular, this value influences four bits of the two most significant bytes of

the C2 IP address. We have no evidence of the motivation that led the threat actor to change

such bits.

However, the pcap_condition is only the tip of the iceberg since the constraints also involve

the first 8 bytes of the packet (namely the first dword and the second dword) together with the

source port used to send the packet. It is worth noting that this part of “Penquin_x64” didn’t

change too much from the first version. A comparison between the control flow graph of

“Penquin” and “Penquin_x64” is reported in Figure 6.

In the first part of the control flow graph, highlighted in Figure 6, both versions filter out

protocols different from TCP or UDP. The central portion seems to be different, but a closer

look shows that they are very similar since the 32 bits version uses a call to an external

function, while the 64 bits version uses the inlining of the same function. The bottom part is

again very similar, and it is related to the payload and source port constraints.

17

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

Figure 6 – Comparison of the control flow graph of “Penquin” and “Penquin_x64” related to

the magic packet that activates the backdoor

(1d5e4466a6c5723cd30caf8b1c3d33d1a3d4c94c25e2ebe186c02b8b41daf905 vs

67d9556c695ef6c51abf6fbab17acb3466e3149cf4d20cb64d6d34dc969b6502).

The commented C code that we generated during the analysis is reported in the following

code snippet. This piece of code replicates the behaviour of Penquin when it receives a packet

that passes the pcap_condition. In particular, it is used by the malware to retrieve the IP

address it has to connect back to. Note that in case the packet does not satisfy the

mathematical constraints reported in this code snippet, then the sample will not open back any

connection.

Transport protocol
constraints

Payload and source
port constraints

18

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

At first sight, it is not the easiest piece of C code you can find. The relation between the final IP

address and the input values depends on several bitwise operations that must be fully

understood in order to make further considerations.

UINT64 get_final_ip (UINT32 first_dword, UINT32 second_dword, UINT16 src_port)

{

 UINT16 src_port_ror;

 BYTE final_check_1;

 BYTE final_check_2;

 UINT32 final_check_3;

 UINT32 final_check_5;

 UINT32 ip_final;

 UINT64 result;

 src_port_ror = __ROR2__(src_port, 8);

 /* Calculates conditions from input data */

 final_check_1 = ((__ROR2__(second_dword, 8) & 0xE000) >> 10) | __ROR2__(second_dword, 8) & 7;

 final_check_2 = (__ROR2__(second_dword, 8) & 0x18) >> 3;

 final_check_3 = ((first_dword & 0x200) << 6) | 2 * (first_dword & 0x1C0) | src_port_ror & 0x7C7F;

 final_check_5 = (first_dword & 0x3C00000u) >> 22;

 ip_final = ((src_port_ror & 0x8000) >> 6) | ((src_port_ ror & 0x380) >> 1) |

((__ROR2__(second_dword, 8) & 0x1E0) << 17) | first_dword & 0xFC3FFC3F;

 /* Verify the conditions on the input data */

 if (

 ((unsigned __int8)final_check_5 | (unsigned __int8)((__ROR2__(second_dword, 8) & 0x1E00) >>

5))

 !=

 ((unsigned __int8)(HIBYTE(ip_final) ^ BYTE1(ip_final) ^ BYTE1(final_check_3)) ^

 (unsigned __int8)(BYTE2(ip_final) ^ ip_final ^ final_check_3 ^

 (final_check_1 | (final_check_2 << 6))))

)

 res ult = 0;

 else

 result = ip_final;

 return result;

}

19

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

Figure 7 - Representation of the checks made by “Penquin” in order to retrieve the command

and control IP address from a sniffed incoming activation packet.

A different representation of the commented C code is reported in Figure 7 where the relation

between the input packets and the final destination IP address, as well as the conditions

required by Penquin, are summarised. Every field is represented with a bit-level granularity

since most of the operations are performed bitwise and do not align to the byte boundaries. On

top, there is the input data (that consists of two DWORDS and the source port) and the final IP

address. The first DWORD is not considered by the pcap_condition so it can be set to an

arbitrary value. The second DWORD should appear familiar since it corresponds to the value

specified in the pcap filter (for example, 0xbdbd0560 for “Penquin_x64” samples). This DWORD is

subject to the constraints of the pcap_condition. In the figure, the values of “Penquin_x64” are

reported; the bits marked with an ‘x’ can be chosen as desired, as long as they match the

conditions represented in the bottom section of the figure.

20

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

Figure 8 - Portion of code of “Penquin_x64” executed when a valid incoming activation packet

is received

Another interesting portion of the code of “Penquin_x64” is reported in Figure 8. These

instructions are executed when the conditions we discussed are matched. However, it is

important to note that final_check_1 must be equal to 1Dh in order to be accepted by this

sample. Such value was specified as a command line parameter in “Penquin” version and it

was hardcoded in “Penquin_x64”.

Figure 8 also reports an important detail about final_check_2. This value is used as a status

flag. Whenever the execution reaches the final basic block, the sample changes its internal

status according to the value of final_check_2 and stores it into the register r15d. This value

depends on the values marked with ‘x’ of the second DWORD of the packet. This means that

a correctly formatted activation packet is accepted only if the state of the stored final_check_2

value is different from the one generated from the incoming packet. However final_check_2

seems to have only two possible values that are 0 or 2. Since the status is zero-initialized, the

first packet to activate Penquin must have final_check_2 equal to 2.

21

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

4.4 Is the Penquin in the house?

With the knowledge and understanding of the portion of binary code related to the magic

packet, we have been able to forge packets that are compliant with all the conditions of the

Penquin protocol. The python code reported below triggers the sample to connect back to an

IP address that is encoded inside the payload. It can be used by blue teams to check if their

Linux servers are infected by this version of “Penquin_x64”.

import socket

tc_remote_port = 0x9999

outgoing_if = "192.168.202.1" # local IP

remote_tc_host = "192.168.202.130" # potentially infected machine IP

#send UDP packet with final_check2 equal to 2 and callback IP address equal to 10.11.60.129

tc_local_port = 65105

tc_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

tc_sock.bin d((outgoing_if, tc_local_port))

tc_sock.sendto(b" \ x4a \ x0a \ x3c \ x83 \ x60 \ x95 \ xbd \ xbd", (remote_tc_host,tc_remote_port))

#send UDP packet with final_check2 equal to 0 and callback IP address equal to 10.188.60.129

tc_local_port = 30846

tc_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

tc_sock.bind((outgoing_if, tc_local_port))

tc_sock.sendto(b" \ x0a \ xbc \ x3c \ x80 \ x62 \ x85 \ xbd \ xbd", (remote_tc_host,tc_remote_port))

The variables that can be freely configured are: tc_remote_port , outgoing_if and

remote_tc_host . Since we are unable to establish the value of the status flag in advance,

two packets are sent in order to trigger the connection to one of the two private IP addresses

10.11.60.129 or 10.188.60.129, that should be used by the system administrators to monitor

the call back home traffic of “Penquin_x64”.

22

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

5. CONCLUSION

This report is based on the outcome of a deep technical analysis of a set of malware samples

that have been uploaded to a multi-scanner service in the last few years. Since we didn’t have

the chance to investigate an actual incident involving them, or to analyse a single

compromised machine, we have not been able to collect and analyse additional context

information that could add important information about the victimology, the TTPs of the threat

actor and the timeline of the events.

The analysis we performed proved that Turla continued to develop new versions of

“Penquin_x64” at least up to April 2016. Furthermore, it revealed the enormous effort put in

place by the threat actor to avoid the activation of the backdoor not controlled by themselves.

Nevertheless, we have been able to completely understand the network protocol that is used,

and to build a tool that is able to activate the backdoor and call back an IP address that we can

control. This tool can be used by system administrators for defensive purposes.

23

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

6. MITRE ATT&CK TTPs

T1059 Command-Line

Interface

Command-line interfaces provide a way of interacting with computer

systems and is a common feature across many types of operating

system platforms. One example command-line interface on

Windows systems is cmd, which can be used to perform a number

of tasks including execution of other software. Command-line

interfaces can be interacted with locally or remotely via a remote

desktop application, reverse shell session, etc. Commands that are

executed run with the current permission level of the command-line

interface process unless the command includes process invocation

that changes permissions context for that execution (e.g. Scheduled

Task).

T1205 Port Knocking Port Knocking is a well-established method used by both defenders

and adversaries to hide open ports from access. To enable a port,

an adversary sends a series of packets with certain characteristics

before the port will be opened. Usually this series of packets

consists of attempted connections to a predefined sequence of

closed ports, but can involve unusual flags, specific strings or other

unique characteristics. After the sequence is completed, opening a

port is often accomplished by the host based firewall, but could also

be implemented by custom software.

T1105 Remote File

Copy

Files may be copied from one system to another to stage adversary

tools or other files over the course of an operation. Files may be

copied from an external adversary-controlled system through the

Command and Control channel to bring tools into the victim network

or through alternate protocols with another tool such as FTP. Files

can also be copied over on Mac and Linux with native tools like scp,

rsync, and sftp.

T1094 Custom

Command and

Control Protocol

Adversaries may communicate using a custom command and

control protocol instead of encapsulating commands/data in an

existing Standard Application Layer Protocol. Implementations

include mimicking well-known protocols or developing custom

protocols (including raw sockets) on top of fundamental protocols

provided by TCP/IP/another standard network stack.

T1024 Custom

Cryptographic

Protocol

Adversaries may use a custom cryptographic protocol or algorithm

to hide command and control traffic. A simple scheme, such as

XOR-ing the plaintext with a fixed key, will produce a very weak

ciphertext.

https://attack.mitre.org/techniques/T1059
https://attack.mitre.org/techniques/T1059
https://attack.mitre.org/techniques/T1059
https://attack.mitre.org/software/S0106
https://attack.mitre.org/techniques/T1053
https://attack.mitre.org/techniques/T1053
https://attack.mitre.org/techniques/T1205
https://attack.mitre.org/techniques/T1205
https://attack.mitre.org/techniques/T1105
https://attack.mitre.org/techniques/T1105
https://attack.mitre.org/techniques/T1105
https://attack.mitre.org/software/S0095
https://attack.mitre.org/techniques/T1094
https://attack.mitre.org/techniques/T1094
https://attack.mitre.org/techniques/T1094
https://attack.mitre.org/techniques/T1094
https://attack.mitre.org/techniques/T1071
https://attack.mitre.org/techniques/T1024
https://attack.mitre.org/techniques/T1024
https://attack.mitre.org/techniques/T1024
https://attack.mitre.org/techniques/T1024

24

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

T1032 Standard

Cryptographic

Protocol

Adversaries may explicitly employ a known encryption algorithm to

conceal command and control traffic rather than relying on any

inherent protections provided by a communication protocol. Despite

the use of a secure algorithm, these implementations may be

vulnerable to reverse engineering if necessary secret keys are

encoded and/or generated within malware samples/configuration

files.

T1158 Hidden Files

and Directories

To prevent normal users from accidentally changing special files on

a system, most operating systems have the concept of a ‘hidden’

file. These files don’t show up when a user browses the file system

with a GUI or when using normal commands on the command line.

Users must explicitly ask to show the hidden files either via a series

of Graphical User Interface (GUI) prompts or with command line

switches (dir /a for Windows and ls –a for Linux and macOS).

T1222 File and

Directory

Permissions

Modification

File and directory permissions are commonly managed by

discretionary access control lists (DACLs) specified by the file or

directory owner. File and directory DACL implementations may vary

by platform, but generally explicitly designate which users/groups

can perform which actions (ex: read, write, execute, etc.).

https://attack.mitre.org/techniques/T1032
https://attack.mitre.org/techniques/T1032
https://attack.mitre.org/techniques/T1032
https://attack.mitre.org/techniques/T1032
https://attack.mitre.org/techniques/T1222
https://attack.mitre.org/techniques/T1222
https://attack.mitre.org/techniques/T1222
https://attack.mitre.org/techniques/T1222

25

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

7. INDICATORS OF COMPROMISE

Hashes

1d5e4466a6c5723cd30caf8b1c3d33d1a3d4c94c25e2ebe186c02b8b41daf905

8dc3d053e5008ab92a17dc47fed43213a9873db0

0994d9deb50352e76b0322f48ee576c6

3e138e4e34c6eed3506efc7c805fce19af13bd62aeb35544f81f111e83b5d0d4

04686b0d2fdafa7cb6c17adc551abade334d7b85

14ecd5e6fc8e501037b54ca263896a11

8856a68d95e4e79301779770a83e3fad8f122b849a9e9e31cfe06bf3418fa667

7f043eb95d74d051ac780aee52ebf1c497c43060

19fbd8cbfb12482e8020a887d6427315

2dabb2c5c04da560a6b56dbaa565d1eab8189d1fa4a85557a22157877065ea08

4594453e2e4002101481dc44f203d3ffebe079ae

edf900cebb70c6d1fcab0234062bfc28

5a204263cac112318cd162f1c372437abf7f2092902b05e943e8784869629dd8

09580f1deb096bb50d082bd169271d41756adf73

ea06b213d5924de65407e8931b1e4326

d49690ccb82ff9d42d3ee9d7da693fd7d302734562de088e9298413d56b86ed0

9d133d7e0616573a7d1c822cc878149e7aa7bad6

e079ec947d3d4dacb21e993b760a65dc

8ccc081d4940c5d8aa6b782c16ed82528c0885bbb08210a8d0a8c519c54215bc

0675329cfa4d13ee35f74c1cc236bc630b7de464

ad6731c123c4806f91e1327f35194722

67d9556c695ef6c51abf6fbab17acb3466e3149cf4d20cb64d6d34dc969b6502

f5a1a9180913bbeb1641af48660fbb756325f91e

b4587870ecf51e8ef67d98bb83bc4be7

d9f2467ff11efae921ec83e074e4f8d2eac7881d76bff60a872a801bd45ce3d5

c67abb20ae5100f12ce084279827632fdbcb222a

7533ef5300263eec3a677b3f0636ae73

26

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

Yara Rules

rule APT_MAL_LNX_Turla_Apr202004_1 {

 meta:

 description = "Detects Turla Linux malware x64 x32"

 date = "2020-04-24"

 hash1 = "67d9556c695ef6c51abf6fbab17acb3466e3149cf4d20cb64d6d34dc969b6502"

 hash2 = "8ccc081d4940c5d8aa6b782c16ed82528c0885bbb08210a8d0a8c519c54215bc"

 hash3 = "8856a68d95e4e79301779770a83e3fad8f122b849a9e9e31cfe06bf3418fa667"

 hash4 = "1d5e4466a6c5723cd30caf8b1c3d33d1a3d4c94c25e2ebe186c02b8b41daf905"

 hash5 = "2dabb2c5c04da560a6b56dbaa565d1eab8189d1fa4a85557a22157877065ea08"

 hash6 = "3e138e4e34c6eed3506efc7c805fce19af13bd62aeb35544f81f111e83b5d0d4"

 hash7 = "5a204263cac112318cd162f1c372437abf7f2092902b05e943e8784869629dd8"

 hash8 = "8856a68d95e4e79301779770a83e3fad8f122b849a9e9e31cfe06bf3418fa667"

 hash9 = "d49690ccb82ff9d42d3ee9d7da693fd7d302734562de088e9298413d56b86ed0"

 strings:

 $s1 = "/root/.hsperfdata" ascii fullword

 $s2 = "Desc| Filename | size |state|" ascii fullword

 $s3 = "VS filesystem: %s" ascii fullword

 $s4 = "File already exist on remote filesystem !" ascii fullword

 $s5 = "/tmp/.sync.pid" ascii fullword

 $s6 = "rem_fd: ssl " ascii fullword

 $s7 = "TREX_PID=%u" ascii fullword

 $s8 = "/tmp/.xdfg" ascii fullword

 $s9 = "__we_are_happy__" ascii fullword

 $s10 = "/root/.sess" ascii fullword

 $s11 = "ZYSZLRTS^Z@@NM@@G_Y_FE" ascii fullword

 condition:

 uint16(0) == 0x457f and

 filesize < 5000KB and

 4 of them

}

27

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

rule APT_MAL_LNX_Turla_Apr202004_1_opcode {

 meta:

 description = "Detects Turla Linux malware x64 x32"

 date = "2020-04-24"

 hash1 = "67d9556c695ef6c51abf6fbab17acb3466e3149cf4d20cb64d6d34dc969b6502"

 hash2 = "8ccc081d4940c5d8aa6b782c16ed82528c0885bbb08210a8d0a8c519c54215bc"

 hash3 = "8856a68d95e4e79301779770a83e3fad8f122b849a9e9e31cfe06bf3418fa667"

 hash4 = "1d5e4466a6c5723cd30caf8b1c3d33d1a3d4c94c25e2ebe186c02b8b41daf905"

 hash5 = "2dabb2c5c04da560a6b56dbaa565d1eab8189d1fa4a85557a22157877065ea08"

 hash6 = "3e138e4e34c6eed3506efc7c805fce19af13bd62aeb35544f81f111e83b5d0d4"

 hash7 = "5a204263cac112318cd162f1c372437abf7f2092902b05e943e8784869629dd8"

 hash8 = "8856a68d95e4e79301779770a83e3fad8f122b849a9e9e31cfe06bf3418fa667"

 hash9 = "d49690ccb82ff9d42d3ee9d7da693fd7d302734562de088e9298413d56b86ed0"

 strings:

 $op0 = { 8D 41 05 32 06 48 FF C6 88 81 E0 80 69 00 } /* Xor string loop_p1 x32*/

 $op1 = { 48 FF C1 48 83 F9 49 75 E9 } /* Xor string loop_p2 x32*/

 $op2 = { C7 05 9B 7D 29 00 1D 00 00 00 C7 05 2D 7B 29 00 65 74 68 30 C6 05 2A 7B 29 00 00 E8 }

 /* Load eth0 interface*/

 $op3 = { BF FF FF FF FF E8 96 9D 0A 00 90 90 90 90 90 90 90 90 90 90 89 F0}

 /* Opcode exceptions*/

 $op4 = { 88 D3 80 C3 05 32 9A C1 D6 0C 08 88 9A 60 A1 0F 08 42 83 FA 08 76 E9 }

 /* Xor string loop x64*/

 $op5 = { 8B 8D 50 DF FF FF B8 09 00 00 00 89 44 24 04 89 0C 24 E8 DD E5 02 00 } /* Kill call x32 */

 $op6 = { 8D 5A 05 32 9A 60 26 0C 08 88 9A 20 F4 0E 08 42 83 FA 48 76 EB } /* Decrypt init str */

 $op7 = { 8D 4A 05 32 8A 25 26 0C 08 88 8A 20 F4 0E 08 42 83 FA 08 76 EB} /* Decrypt init str */

 condition:

 uint16(0) == 0x457f and

 filesize < 5000KB and

 2 of them

}

28

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

REFERENCES

[1] The ‘Penquin’ Turla: A Turla/Snake/Uroburos Malware for Linux; by Kurt
Baumgartner, Costin Raiu. December 2014.

[2] Penquin’s Moonlit Maze: The Dawn of Nation-State Digital Espionage; by Juan
Andres Guerrero-Saade (GReAT), Costin Raiu (GReAT), Daniel Moore (King’s
College London), Thomas Rid (King’s College London). April 2017.

[3] APT Case RUAG; by GovCERT.ch: Technical Report about the Espionage Case
at RUAG. May 2016.

[4] Satellite Turla: APT Command and Control in the Sky. How the Turla operators
hijack satellite Internet links, by Stefan Tanase. September 2015.

29

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

APPENDIX A: BUILD DATE ESTIMATION

The ELF file format does not contain an explicit compile timestamp field, and therefore we had

to consider different approaches. Due to these limitations, we have been able to outline a

rough timeline of events only, but we have no evidence that such dates have been

timestomped in some way or that some behaviour has been deliberately put in place by the

threat actor in order to hinder such kind of analysis.

Statically linked libraries and compilers

All the samples we analysed statically include a few libraries, such as libpcap, openssl and

glibc which have strings suggesting their version. Furthermore, even though debugging

information has been stripped off, the samples still embed GCC compiler versions into the

section named .comment. Therefore, our first thought was to estimate the release date of

these libraries and compilers in such a way to have a lower bound on the build date of the

malware. Unfortunately, as for “Penquin” and “Penquin_2.0”, most of the temporal references

date back to 2000-2004, as reported in Table 5. These dates may suggest that the samples

belonging to these two sets have been built almost ten years before the publication of the first

report on this threat. It is also likely that the threat actor included these old libraries for other

reasons, such as to preserve compatibility.

The “Penquin_x64” set is far more recent. Indeed, these samples introduced the usage of

OpenSSL 1.0.1j that has been released at the end of 2014, more specifically on October 15th,

2014. Therefore, taking into account this information only, “Penquin_x64” must have a build

date that is post mid-October 2014. At this point, we almost lost the hope that “Penquin_x64”

could be more recent than 2014, but we wanted to look at it closer. Therefore, we tried harder

(and did more).

Library Included Penquin Penquin_2.0 Penquin_x64 Year
(>=)

OpenSSL 0.9.6 2000

OpenSSL 0.9.7e 2004

OpenSSL 1.0.1j 2014

libpcap (several with a date between
2000 and 2001)

 2000 -
2001

libpcap version 1.1.1 2010

glibc 2.3.2 2004

30

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

glibc 2.3.6 2006

GCC: (GNU) 3.3.2 20031022 (Red Hat
Linux 3.3.2-1)

 2003

GCC: (GNU) 3.3.2 20031218 (Red Hat
Linux 3.3.2-5)

 2003

GCC: (GNU) 3.3.5 (Debian 1:3.3.5-13) 2004

GCC: (GNU) 3.3.6 2005

GCC: (GNU) 4.1.0 2006

Table 5 - Compilers and Libraries statically included in the three “Penquin” versions

EI_ABIVERSION Analysis

We made a second attempt to estimate the build date using the EI_ABIVERSION embedded

within the samples. This field of the ELF binary file format specifies the version of the

Application Binary Interface to which the object is targeted. This version is mainly related to

what version of the compiler (typically GCC) was used to build the sample. Although a table of

the GCC releases can be obtained easily (https://gcc.gnu.org/releases.html), the ABI version

associated with each version is not immediately available. To this aim we downloaded several

GCC versions and tried to derive which ABI corresponds to each version. Partial results of this

preliminary task are reported in Table 6.

GCC ABI Release date

4.4.4 2.6.15 April 29, 2010

4.8.2 2.6.24 October 16, 2013

4.9.1 2.6.32 July 16, 2014

6.2.0 2.6.32 August 22, 2016

6.3.0 2.6.32 December 21, 2016

7.2.0 3.2 August 14, 2017

https://gcc.gnu.org/releases.html

31

MALWARE TECHNICAL INSIGHT: TURLA “Penquin_x64”

Company General Use

© Copyright Leonardo S.p.a. – All rights reserved

7.3.0 3.2 January 25, 2018

7.5 3.2 November 14, 2019

9.2.1 3.2 August 12, 2019

Table 6 - ABI and GCC versions release date

Unfortunately, as reported in Table 6, the ABI remains quite stable over time (e.g. ABI 2.6.32

has been out for 2.5 years at least), as such this analysis didn’t provide us a smaller time

window with respect to the analysis of the linked libraries (see Table 7).

ABI Version Penquin Penquin_2.0 Penquin_x64 Year (>=)

 2.2.0 2004

 2.2.5 2003

 2.4.18 2006

Table 7 - Penquin build date estimation based on the ABI field of the ELF

Section 3 describes the approach that was taken to estimate the build date of the

“Penquin_x64” samples, achieving what we consider the most accurate result.

 Company General Use

Piazza Monte Grappa, 4

00195 Rome

T +39 06324731

F +39 063208621

leonardocompany.com

© Copyright Leonardo S.p.a. – All rights reserved

